Cookies on Find an energy certificate

We use some essential cookies to make this service work.

We'd also like to use analytics cookies so we can understand how you use the service and make improvements.

Accept analytics cookies

Reject analytics cookies

View cookies (/cookies)

Energy performance certificate (EPC)

Property type

Semi-detached house

Total floor area

119 square metres

Rules on letting this property


Properties can be rented if they have an energy rating from A to E.

If the property is rated F or G, it cannot be let, unless an exemption has been registered. You can read <u>guidance for landlords on the regulations and exemptions (https://www.gov.uk/guidance/domestic-private-rented-property-minimum-energy-efficiency-standard-landlord-guidance)</u>.

Energy efficiency rating for this property

This property's current energy rating is E. It has the potential to be B.

See how to improve this property's energy performance.

The graph shows this property's current and potential energy efficiency.

Properties are given a rating from A (most efficient) to G (least efficient).

Properties are also given a score. The higher the number the lower your fuel bills are likely to be.

For properties in England and Wales:

- the average energy rating is D
- the average energy score is 60

Breakdown of property's energy performance

This section shows the energy performance for features of this property. The assessment does not consider the condition of a feature and how well it is working.

Each feature is assessed as one of the following:

- very good (most efficient)
- good
- average
- poor
- very poor (least efficient)

When the description says "assumed", it means that the feature could not be inspected and an assumption has been made based on the property's age and type.

Feature	Description	Rating
Wall	Solid brick, as built, no insulation (assumed)	Very poor
Wall	Cavity wall, as built, no insulation (assumed)	Poor
Wall	Cavity wall, as built, insulated (assumed)	Very good
Roof	Pitched, no insulation (assumed)	Very poor
Roof	Pitched, insulated (assumed)	Good
Roof	Roof room(s), no insulation (assumed)	Very poor
Window	Fully double glazed	Good
Main heating	Boiler and radiators, mains gas	Good
Main heating control	Programmer, TRVs and bypass	Average
Hot water	From main system	Good
Lighting	No low energy lighting	Very poor
Floor	Suspended, no insulation (assumed)	N/A
Floor	Solid, no insulation (assumed)	N/A
Floor	Solid, insulated (assumed)	N/A
Secondary heating	Portable electric heaters (assumed)	N/A

Primary energy use

The primary energy use for this property per year is 399 kilowatt hours per square metre (kWh/m2).

► What is primary energy use?

Additional information

Additional information about this property:

· Cavity fill is recommended

Environmental impact of this property

One of the biggest contributors to climate change is carbon dioxide (CO2). The energy used for heating, lighting and power in our homes produces over a quarter of the UK's CO2 emissions.

An average household produces

6 tonnes of CO2

This property produces

8.3 tonnes of CO2

This property's potential production

2.8 tonnes of CO2

By making the <u>recommended changes</u>, you could reduce this property's CO2 emissions by 5.5 tonnes per year. This will help to protect the environment.

Environmental impact ratings are based on assumptions about average occupancy and energy use. They may not reflect how energy is consumed by the people living at the property.

How to improve this property's energy performance

Making any of the recommended changes will improve this property's energy efficiency.

If you make all of the recommended changes, this will improve the property's energy rating and score from E (42) to B (81).

What is an energy rating?

Recommendation 1: Flat roof or sloping ceiling insulation

Flat roof or sloping ceiling insulation

Typical installation cost

£850 - £1,500

Potential energy

rating

Typical yearly saving

£65

Potential rating after carrying out recommendation 1

Recommendation 2: Room-in-roof insulation

Room-in-roof insulation

Typical installation cost

£1,500 - £2,700

Typical yearly saving

£261

Potential rating after carrying out recommendations 1 and 2

Recommendation 3: Cavity wall insulation

Cavity wall insulation

Typical installation cost

£500 - £1,500

Typical yearly saving

£46

Potential rating after carrying out recommendations 1 to 3

53 | E

Recommendation 4: Internal or external wall insulation

Internal or external wall insulation

Typical installation cost

£4,000 - £14,000

Typical yearly saving

£227

Potential rating after carrying out recommendations 1 to 4

60 | D

Recommendation 5: Floor insulation (suspended floor)

Floor insulation (suspended floor)

Typical installation cost

£800 - £1,200

Typical yearly saving

£54

Potential rating after carrying out recommendations 1 to 5

62 | D

Recommendation 6: Low energy lighting

Low energy lighting

Typical installation cost

£65

Typical yearly saving

Potential rating after carrying out recommendations 1 to 6

63 | D

Recommendation 7: Heating controls (room thermostat)

Heating controls (room thermostat)

Typical installation cost

£350 - £450

Typical yearly saving

£45

Potential rating after carrying out recommendations 1 to 7

Recommendation 8: Replace boiler with new condensing boiler

Condensing boiler

Typical installation cost

£2,200 - £3,000

Typical yearly saving

£234

Potential rating after carrying out recommendations 1 to 8

72 | C

Recommendation 9: Solar water heating

Solar water heating

Typical installation cost

£4,000 - £6,000

Typical yearly saving

Potential rating after carrying out recommendations 1 to 9

73 | C

Recommendation 10: Solar photovoltaic panels, 2.5 kWp

Solar photovoltaic panels

Typical installation cost

£5,000 - £8,000

Typical yearly saving

£282

Potential rating after carrying out recommendations 1 to 10

Paying for energy improvements

Find energy grants and ways to save energy in your home. (https://www.gov.uk/improve-energy-efficiency)

Estimated energy use and potential savings

Estimated yearly energy cost for this property

£1850

Potential saving

£1023

The estimated cost shows how much the average household would spend in this property for heating, lighting and hot water. It is not based on how energy is used by the people living at the property.

The estimated saving is based on making all of the recommendations in how to improve this property's energy performance.

For advice on how to reduce your energy bills visit Simple Energy Advice (https://www.simpleenergyadvice.org.uk/).

Heating use in this property

Heating a property usually makes up the majority of energy costs.

Estimated energy used to heat this property

Space heating

Water heating

2288 kWh per year

Potential energy savings by installing insulation

Type of insulation	Amount of energy saved
Loft insulation	1717 kWh per year
Cavity wall insulation	669 kWh per year
Solid wall insulation	3267 kWh per year

You might be able to receive Renewable Heat Incentive payments (https://www.gov.uk/domestic-renewable-heat-incentive). This will help to reduce carbon emissions by replacing your existing heating system with one that generates renewable heat. The estimated energy required for space and water heating will form the basis of the payments.

Contacting the assessor and accreditation scheme

This EPC was created by a qualified energy assessor.

If you are unhappy about your property's energy assessment or certificate, you can complain to the assessor directly.

If you are still unhappy after contacting the assessor, you should contact the assessor's accreditation scheme.

Accreditation schemes are appointed by the government to ensure that assessors are qualified to carry out EPC assessments.

Assessor contact details

Assessor's name

Nigel Hodges

Telephone

0797 9151899

Email

nigeldea@btinternet.com

Accreditation scheme contact details

Accreditation scheme

Elmhurst Energy Systems Ltd

Assessor ID

EES/002605

Telephone

01455 883 250

Email

enquiries@elmhurstenergy.co.uk

Assessment details

Assessor's declaration

No related party

Date of assessment

12 March 2018

Date of certificate

12 March 2018

Type of assessment

► RdSAP

Other certificates for this property

If you are aware of previous certificates for this property and they are not listed here, please contact us at mhclg.digital-services@communities.gov.uk or call our helpdesk on 020 3829 0748.

There are no related certificates for this property.